Complementarity Systems in Constrained Steady-State Optimal Control
نویسندگان
چکیده
This paper presents a solution to the problem of regulating a general nonlinear dynamical system to a time-varying economically optimal operating point. The system is characterized by a set of exogenous inputs as an abstraction of time-varying loads and disturbances. The economically optimal operating point is implicitly defined as a solution to a given constrained convex optimization problem, which is related to steady-state operation. The system outputs and the exogenous inputs represent respectively the decision variables and the parameters in the optimization problem. Complementarity systems are employed as building blocks to construct a dynamic controller that solves the considered regulation problem. The complementarity solution arises naturally via a dynamic extension of the Karush-Kuhn-Tucker optimality conditions for the steady-state related optimization problem.
منابع مشابه
The Exact Solution of Min-Time Optimal Control Problem in Constrained LTI Systems: A State Transition Matrix Approach
In this paper, the min-time optimal control problem is mainly investigated in the linear time invariant (LTI) continuous-time control system with a constrained input. A high order dynamical LTI system is firstly considered for this purpose. Then the Pontryagin principle and some necessary optimality conditions have been simultaneously used to solve the optimal control problem. These optimality ...
متن کاملMonetary Policy as Equilibrium Selection
Can monetary policy guide expectations toward desirable outcomes when equilibrium and welfare are sensitive to alternative, commonlyheld rational beliefs? We study this question in an exchange economy with endogenous debt limits in which dynamic complementarities between dated debt limits support two Pareto-ranked steady states: A sub-optimal, locally stable autarkic state, and a constrained op...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملThe Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint
In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...
متن کاملA numerical framework for optimal control of switched affine systems with state constraint
In this paper, we address the problem of numerical implementation of optimal control for switched affine systems with state constraints. In order to properly solve the problem, a relaxed system is introduced and the connection between the solution of this system and the solution of the initial one is established. One of the main difficulties is then related to the fact that the optimal solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008